dr hab. Małgorzata Wróbel, prof. P.Cz. 22.08.2019 -
Imię: dr hab. Małgorzata Wróbel, prof. P.Cz.
Status: Użytkownik
Ostatnia aktualizacja: 11-04-2019 14:40:30
dr hab. Małgorzata Wróbel, prof. P.Cz.

pokój: 303, al. Armii Krajowej 21
tel.: (0-34) 3250-324
email:

konsultacje w semestrze letnim 2018/2019
wtorek: 8.00-9.00; 13.30-14.15
Publikacje

H. Izumi, L. Li, J. Matkowski, M. Wrobel, Sandwich with periodicity, Aequat. Math. (2018). https://doi.org/10.1007/s00010-018-0605-0.

M. Lupa, M. Wróbel, Uniformly bounded Nemytskij operators acting between the Banach spaces of generalized Hölder functions, J. Appl. Math. Comput. Mech., 16 (4) (2017), 37-45.

T. Lara, J. Matkowski, N. Merentes, R. Quintero, M. Wróbel, A generalization of m-convexity and a sandwich theorem, Annales Mathematicae Silesianae 31 (2017), 107-126.

J. Matkowski, M. Wróbel, Sandwich theorem for m-convex functions, J. Math. Anal. Appl. 451 (2017), 924-930.

K. Domańska, M. Wróbel, About the ways of defining connected sets in the topological spaces, Scientific Issues, Jan Długosz University in Częstochowa, Mathematics XXI (2016), 11-16.

J.A. Guerrero, J. Matkowski, N. Merentes, M. Wróbel, Uniformly bounded set-valued composition operators in the spaces of functions of bounded variation in the sense of Wiener, Journal of Applied Mathematics and Computational Mechanic, 14(4) (2015), 41-51.

T.Ereu, N.Merentes, M.Wróbel, A remark on a uniformly bounded composition operator acting between Banach spaces of functions of two variables of bounded Schramm variation, Scientific Issues, Jan Długosz University in Częstochowa, Mathematics XVIII (2013), 19-27.

M.Wróbel, Locally defined operators in the space of functions of bounded phi-variation, Real Anal. Exch. 38(1) (2013), 79-94.

M.Wróbel, Uniformly bounded Nemytskij operators between the Banach spaces of functions of bounded n-th variation, J Math. Anal. Appl., 391(2012), 451-456.

W.Aziz, T.Ereu, N.Merentes, J.L.Sanchez, M.Wróbel, Uniformly continuous composition operators in the space of functions of two variables of bounded phi-variation in the sense of Schramm, Scientific Issues, Jan Długosz University in Częstochowa, Mathematics XVII (2012), 7-16.

T.Ereu, N.Merentes, J.L.Sanchez, M.Wróbel, Uniformly bounded set-valued composition operators in the space of functions of bounded variation in the sense of Schramm, Scientific Issues, Jan Długosz University in Częstochowa, Mathematics XVII (2012), 37-47.

J.Matkowski, M.Wróbel, Uniformly bounded set-valued Nemytskij operators acting between generalized Holder function spaces, Central European Journal of Mathematics, 10(2), (2012), 609-618.

T.Ereu, N.Merentes, J.L.Sanchez, M.Wróbel, Uniformly continuous composition operators in the space of bounded phi-variation functions in the Schramm sense, Opuscula Mathematica, (32)2012, 239-249.

J.Matkowski, M.Wróbel, Uniformly bounded Nemytskij operators generated by set-valued functions between generalized Holder function spaces, Discussiones Mathematicae Differential Inclusions, Control and Optimization, 31(2011), 183-198.

T.Ereu, N.Merentes, J.L.Sanchez, M.Wróbel, Uniformly continuous set-valued composition operators in the space of functions of bounded variation in the sense of Schramm, Scientific Issues of Jan Długosz University in Częstochowa, Mathematics XVI (2011), 23-32.

M.Wróbel, Locally defined operators in Holder spaces, Nonlinear Analysis: Theory, Methods and Applications, 74 (2011), 317-323.

J.Matkowski, M.Wróbel, The bounded local operators in the Banach space of Holder functions, Scientific Issues, Mathematics XV, Częstochowa (2010), 91-98.

J.Knop, M.Wróbel, A characteristic of i-connected spaces, Tatra Mt. Math. Publ. 46 (2010), 1-5.

M.Wróbel, Representation theorem for local operators in the space of continuous and monotone functions, J. Math. Anal. Appl. 372 (2010), 45-54.

M.Wróbel, Locally defined operators and a partial solution of a conjecture, Nonlinear Analysis: Theory, Methods and Applications 72 (2010), 495-506.

J.Matkowski, M.Wróbel, Representation theorem for locally defined operators in the space of Whitney differentiable functions, Manuscripta Mathematica, 129 (2009), 437-448.

J.Matkowski, M.Wróbel, Locally defined operators in the space of Whitney differentiable functions, Nonlinear Analysis: Theory, Methods and Applications, 68 (2008), 2933-2942.

M.Wróbel, Lichawski-Matkowski-Mi¶ Theorem of locally defined operators for functions of several variables, Annales Academiae Paedagogicae Cracoviensis Studia Mathematica, 7 ( 2008), 15-22.

J.Knop, M.Wróbel, Some properties of i-connected sets (Part II), Jan Długosz University of Częstochowa, Scientific Issues, Mathematics XII, Częstochowa (2007), 55-60.

J.Knop, M.Wróbel, Some properties of i-connected sets, Annales Academiae Paedagogicae Cracoviensis Studia Mathematica, 6 ( 2007), 51-56.

M.Wróbel ,On functions of bounded n-th variation, Annales Mathematicae Silesianae 15 (2001), 79-86.

M.Wróbel, Locally defined operators, Prace naukowe WSP w Częstochowie, Matematyka VI (1999), 144-147.

.Knop, T.Kostrzewski, M.Lupa, M.Wróbel, On a special case of the Goł±b-Schinzel functional equation, Demonstratio Mathematica, 30 (1997), 475-478.

J.Matkowski, M.Wróbel, A generalized a-Wright convexity and related functional equation, Annales Mathematicae Silesianae 10 (1996), 7-12.

M.Wróbel, An example to a problem of Z. Daroczy, Zeszyty Naukowe Politechniki Łódzkiej, Matematyka 23 (1993), 30-38.
Blue Glass Theme by ptown67

Powered by PHP-Fusion copyright © 2002 - 2019 by Nick Jones.
Released as free software without warranties under GNU Affero GPL v3.